Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biosens Bioelectron ; 234: 115356, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2310195

ABSTRACT

The COVID-19 pandemic ignited massive research into the rapid detection of bioaerosols. In particular, nanotechnology-based detection strategies are proposed as alternatives because of issues in bioaerosol enrichment and lead time for molecular diagnostics; however, the practical implementation of such techniques is still unclear due to obstacles regarding the large research and development effort and investment for the validation. The use of adenosine triphosphate (ATP) bioluminescence (expressed as relative luminescence unit (RLU) per unit volume of air) of airborne particulate matter (PM) to determine the bacterial population as a representative of the total bioaerosols (viruses, bacteria, and fungi) has been raised frequently because of the high reponse speed, resolution, and compatibility with culture-based bioaerosol monitoring. On the other hand, additional engineering attempts are required to confer significance because of the size-classified (bioluminescence for different PM sizes) and specific (bioluminescence per unit PM mass) biological risks of air for providing proper interventions in the case of airborne transmission. In this study, disc-type impactors to cut-off aerosols larger than 1 µm, 2.5 µm, and 10 µm were designed and constructed to collect PM1, PM2.5, and PM10 on sampling swabs. This engineering enabled reliable size-classified bioluminescence signals using a commercial ATP luminometer after just 5 min of air intake. The simultaneous operations of a six-stage Andersen impactor and optical PM spectrometers were conducted to determine the correlations between the resulting RLU and colony forming unit (CFU; from the Andersen impactor) or PM mass concentration (deriving specific bioluminescence).


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Adenosine Triphosphate/analysis , Pandemics , Air Microbiology , Biosensing Techniques/methods , COVID-19/diagnosis , Respiratory Aerosols and Droplets , Bacteria , Fungi , Environmental Monitoring/methods , Particle Size
2.
J Hazard Mater ; 445: 130458, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2228918

ABSTRACT

The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.

3.
J Hazard Mater ; 424(Pt A): 127262, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1414652

ABSTRACT

Air purification through fiber-based filters has become a fundamental requirement for air contamination control. However, conventional filters depend on polymeric fibrous filters with adequate particulate matter removal ability but fewer degassing and biocidal effects. This study presents the photocatalytic volatile organic compound (VOC) oxidation and antimicrobial properties of zinc oxide (ZnO) nano-spines sprouted activated-carbon nanofibers (I@ZnO/ACNFs) and their potential for air contamination control and infection prevention. By developing a novel technique that can induce phase separation of inorganic salts during electrospinning, nanofibers with zinc (Zn) components concentrated on the surface could be synthesized. I@ZnO/ACNFs exhibit a surface densely covered with high aspect-ratio ZnO nano-spines with significant lethality to airborne pathogens and enhanced photocatalytic activity toward VOCs. Moreover, excellent adhesion stability of ZnO to ACNFs under rapid airflow was observed in I@ZnO/ACNFs. In combination with intriguing antimicrobial activity and strong VOC removal capability derived from their unique morphology, novel I@ZnO/ACNFs hold potential for airborne microbial disinfection, effective and sustainable VOC purification, and the design of photomicrobicidal and photocatalytic materials.


Subject(s)
Nanofibers , Volatile Organic Compounds , Zinc Oxide , Bacteria , Carbon Fiber
4.
J Hazard Mater ; 413: 125417, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1114043

ABSTRACT

Airborne virus susceptibility is an underlying cause of severe respiratory diseases, raising pandemic alerts worldwide. Following the first reports of the novel severe acute respiratory syndrome coronavirus-2 in 2019 and its rapid spread worldwide and the outbreak of a new highly variable strain of influenza A virus (H1N1) in 2009, developing quick, accurate monitoring and diagnostic approaches for emerging infections is considered critical. Efficient air sampling of coronaviruses and the H1N1 virus allows swift, real-time identification, triggering early adjuvant interventions. Electrostatic precipitation is an efficient method for sampling bio-aerosols as hydrosols; however, sampling conditions critically impact this method. Corona discharge ionizes surrounding air, generating reactive oxygen species (ROS), which may impair virus structural components, leading to RNA and/or protein damage and preventing virus detection. Herein, ascorbic acid (AA) dissolved in phosphate-buffered saline (PBS) was used as the sampling solution of an electrostatic sampler to counteract virus particle impairment, increasing virus survivability throughout sampling. The findings of this study indicate that the use of PBS+AA is effective in reducing the ROS damage of viral RNA by 95%, viral protein by 45% and virus yield by 60%.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Aerosols , Humans , SARS-CoV-2 , Static Electricity
5.
J Hazard Mater ; 412: 125219, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1046317

ABSTRACT

Capturing virus aerosols in a small volume of liquid is essential when monitoring airborne viruses. As such, aerosol-to-hydrosol enrichment is required to produce a detectable viral sample for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. To meet this requirement, the efficient and non-destructive collection of airborne virus particles is needed, while the incoming air flow rate should be sufficiently high to quickly collect a large number of virus particles. To achieve this, we introduced a high air flow-rate electrostatic sampler (HAFES) that collected virus aerosols (human coronavirus 229E, influenza A virus subtypes H1N1 and H3N2, and bacteriophage MS2) in a continuously flowing liquid. Viral collection efficiency was evaluated using aerosol particle counts, while viral recovery rates were assessed using real-time qRT-PCR and plaque assays. An air sampling period of 20 min was sufficient to produce a sample suitable for use in real-time qRT-PCR in a viral epidemic scenario.


Subject(s)
Coronavirus , Influenza A Virus, H1N1 Subtype , Aerosols , Air Microbiology , Coronavirus/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype , Static Electricity
6.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-797526

ABSTRACT

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Subject(s)
Biosensing Techniques/instrumentation , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/virology , Aerosols/analysis , Air Microbiology , Biosensing Techniques/economics , Coronavirus 229E, Human/genetics , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Equipment Design , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Time Factors
7.
J Hazard Mater ; 396: 122640, 2020 09 05.
Article in English | MEDLINE | ID: covidwho-46413

ABSTRACT

Recently, various studies have reported the prevention and treatment of respiratory infection outbreaks caused by lethal viruses. Consequently, a variety of air filters coated with antimicrobial agents have been developed to capture and inactivate virus particles in continuous airflow conditions. However, since aerosolized infectious viral-testing is inadvisable due to safety concerns, their anti-viral capability has only been tested by inserting the filters into liquid media, where infectious virus particles disperse. In this study a novel method of determining anti-viral performance of an air filter against airborne infectious viruses is presented. Initially, anti-viral air filter tests were conducted. Firstly, by an air-media test, in which the air filter was placed against an aerosolized non-infectious virus. Secondly, by a liquid-media test, in which the filter was inserted into a liquid medium containing a non-infectious virus. Subsequently, a correlation was established by comparing the susceptibility constants obtained between the two medium tests and an association was found for the air medium test with infectious virus. After ensuring the relationship did not depend on the virus species, the correlation was used to derive the results of the air-medium test from the results of the liquid-medium test.


Subject(s)
Air Filters , Anti-Infective Agents , Viruses , Air Microbiology , Antiviral Agents , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL